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Abstract

This paper presents a model formulation capable of analyzing large-amplitude free vibrations of a
suspended cable in three dimensions. The virtual work-energy functional is used to obtain the non-linear
equations of three-dimensional motion. The formulation is not restricted to cables having small sag-to-span
ratios, and is conveniently applied for the case of a specified end tension. The axial extensibility effect is also
included in order to obtain accurate results. Based on a multi-degree-of-freedom model, numerical
procedures are implemented to solve both spatial and temporal problems. Various numerical examples of
arbitrarily sagged cables with large-amplitude initial conditions are carried out to highlight some
outstanding features of cable non-linear dynamics by accounting also for internal resonance phenomena.
Non-linear coupling between three- and two-dimensional motions, and non-linear cable tension responses
are analyzed. For specific cables, modal transition phenomena taking place during in-plane vibrations and
ensuing from occurrence of a dominant internal resonance are observed. When only a single mode is
initiated, a higher or lower mode can be accommodated into the responses, making cable spatial shapes
hybrid in some time intervals.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Cable systems are of great interest in a wide range of practical applications for supplying both
support and stability to large structures. Moreover, they are of interest from a theoretical point of
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view, owing to many fundamental non-linear phenomena induced by the overall slenderness and
inherent flexibility of cable structural systems. As a result of dynamical susceptibility to excitation
from surrounding mediums, cable vibrations of large amplitudes may happen in some
circumstances, and may eventually degrade the system performance. To reach a fundamental
understanding of cable behaviors, three-dimensional (3-D) modelling and geometrically non-
linear characteristics should be fully accounted for in the analysis.

Non-linear free vibrations of a suspended cable have been investigated by a number of
researchers, which include Hagedorn and Schafer [1], Luongo et al. [2,3], Rega et al. [4], and
Benedettini et al. [5]. All of them deal with simple cable models, with one or two degrees of
freedom, developed and utilized to obtain analytical solutions. In the same theoretical framework,
both single-degree-of-freedom [6,7] and multi-degree-of-freedom (m.d.o.f.) [8–12] models have
been considered to explore numerous non-linear phenomena arising in cable forced vibrations.
These include the meaningful effects of non-linear modal coupling under various external/internal
resonance conditions and the possibility of non-periodic responses. The richness of cable non-
linear dynamics has been further highlighted through systematic experimental investigations
[13,14]. In all theoretical models, a certain number of assumptions have been introduced to
simplify the analytical treatment. Namely, the initial static strain is disregarded so as to obtain an
inextensible parabolic profile of the cable equilibrium configuration where the sag-to-span ratio is
of the order of 1

8
or less. Moreover, the dynamic tension is defined as a function of time only, thus

being spatially uniform, which ensues from the inertial force in the longitudinal direction being
neglected according to a quasi-static stretching model of the cable in motion.

However, Behbahani-Nejad and Perkins [15] have illustrated that the analysis of tension waves
propagating freely along the cable length cannot be accomplished using simple models.
Pakdemirli et al. [16] and Rega et al. [17] have documented that the results obtained by analyzing
reduced-mode discretized models of cable may be quantitatively erroneous for cables with non-
zero sag. Moreover, several studies have highlighted how, depending on system elasto-geometric
properties, the effect of axial deformation on the dynamic behaviors can be significant and should
be considered in the analysis [18–24]. For arbitrarily supported cables or cables with large
curvature, the investigation may require further numerical implementations [25,26]. Takahashi
and Konishi [27] examined sagged cables with either horizontal or inclined supports qualitatively,
and discussed geometrically non-linear effects, but they overlooked the significance of cable
extensibility. Recently, Luo and Mote [28] developed a comprehensive 3-D model governing the
steady response of a travelling, arbitrarily sagged, elastic cable, and obtained exact, closed-form
solutions for steady motion under various loadings. Nevertheless, it seems worth investigating
further 3-D non-linear coupling, as well as the variability of dynamic tension during vibration, by
considering a m.d.o.f. model which accounts for cable extensibility and non-uniform dynamic
tension, and which is not restricted to low values of the sag-to-span ratios.

The objective of the present study is to analyze numerically the large-amplitude free vibrations
of arbitrarily sagged elastic cables through a rigorous formulation, which takes into account the
axial deformation effect. Based on the principle of virtual work-energy, the non-linear equations
of 3-D coupled motions are derived in Section 2. A m.d.o.f. model, which is not limited to cables
having small sag-to-span ratios, is utilized within a numerical solution of the spatial and temporal
problems (Section 3). The attention is then placed on the investigation of the cable 3-D non-linear
free dynamics ensuing from a given set of initial conditions (Section 4). With this aim, the linear
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modal coordinates of each vibration mode achieved from the previous study of Chucheepsakul
and Srinil [24] are assumed as initial conditions for spatial displacements. The aim is to analyze: (i)
how the cable non-linear response evolves, also in terms of dynamic tension; (ii) how significant
the coupling of 3-D motion is; and (iii) whether and how the internal resonance conditions affect
the dynamics. The non-linear free vibration characteristics of out-of-plane and in-plane vibrations
are examined comprehensively and are discussed in detail.

2. Derivation of equations of motion

Fig. 1 displays the typical reference configuration of a suspended cable of horizontal span XH

with two immovable pinned-supports at the same ground level. One end of the cable is fixed while
the other one is the position where the specified tension TH is applied to maintain the cable in its
static configuration. The coordinates of any point along the cable are represented using the
Cartesian system. Three different states of cable configuration are distinguished, namely the
unstretched, the equilibrium and the dynamic states. The cable forms a catenary suspension under
its own weight at the initial unstretched state ðx; yÞ: Due to axial stretching, the cable moves to the
equilibrium position ðx0; y0Þ; which is considered as the initial configuration for cable dynamics.
Owing to disturbances from external excitation, the cable then moves to the dynamic or displaced
state, in which u; v and w are the components of displacement measured from the equilibrium
configuration in the direction of X -, Y - and Z-axis, respectively.
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The length ds0 of an infinitesimal cable element at the equilibrium state can be written as

ds0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

0

q
dx0; ð1Þ

where a superscript prime denotes a differentiation with respect to x0: Using Lagrangian-strain
definition, the cable segments at the unstretched state ds and displaced state d%s are expressed,
respectively, as

ds ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

0

q
1þ e0

dx0; ð2Þ

d%s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ u0Þ2 þ ðy00 þ v0Þ2 þ w02

q
dx0; ð3Þ

in which e0 is the initial static strain. The total strain at the displaced state is

%e ¼
ð1þ e0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y020

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ u0Þ2 þ ðy00 þ v0Þ2 þ w02

q
� 1: ð4Þ

The strain energies caused by bending, torsional and shear rigidities are neglected based on the
assumption of a perfectly flexible cable. Hence, the strain energy is due only to the stretching of
the cable axis. In view of the application of the principle of virtual work, the strain energy
variation is written as

dU ¼
Z S

0

EA%ed%e ds; ð5Þ

where S is the total undeformed arc-length, E Young’s modulus of the cable, and A its cross-
sectional area, which is assumed to be constant. Substituting Eq. (4) and its variational expression
into Eq. (5) yields

dU ¼
Z XH

0

EAð1þ e0Þð1þ u0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

0

q �
EAð1þ u0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ u0Þ2 þ ðy0
0 þ v0Þ2 þ w02

q
0
B@

1
CAdu0þ

EAð1þ e0Þðy0
0 þ v0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y02
0

q �
EAðy0

0 þ v0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ u0Þ2 þ ðy0

0 þ v0Þ2 þ w02
q

0
B@

1
CAdv0þ

EAð1þ e0Þðw0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y020

q �
EA w0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ u0Þ2 þ ðy00 þ v0Þ2 þ w02
q

0
B@

1
CAdw0

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

dx0: ð6Þ

The virtual work done by the cable weight wC per unit unstretched length is expressed as

dWe ¼
Z XH

0

wC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y020

q
1þ e0

dx0 dv: ð7Þ
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In turn, the virtual work done by the inertial forces is given by

dWi ¼ �
Z XH

0

wC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y020

q
gð1þ e0Þ

ð .udu þ .vdv þ .wdwÞ dx0; ð8Þ

where wC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y020

q
=gð1þ e0Þ is the cable mass per unit stretched length, g is the gravitational

force, .u; .v and .w are the accelerations in the direction of X -, Y - and Z-axis, respectively. Utilizing
the standard principle of virtual displacement, the total virtual work-energy of the cable system is
expressed as

dP ¼ dU � ðdWe þ dWiÞ ¼ 0: ð9Þ

After substitution of Eqs. (6)–(8) into Eq. (9), and integration by parts of the latter with
application of the boundary conditions du ¼ dv ¼ dw ¼ 0 at x0 ¼ 0 and x0 ¼ XH ; Euler’s
equations associated with the virtual displacements du; dv and dw read, respectively:

EAð1þ e0Þð1þ u0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

0

q �
EAð1þ u0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ u0Þ2 þ ðy00 þ v0Þ2 þ w02
q

0
B@

1
CA

0

�
wC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

0

q
gð1þ e0Þ

.u ¼ 0; ð10Þ

EAð1þ e0Þðy0
0 þ v0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ y02
0

q �
EAðy0

0 þ v0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ u0Þ2 þ ðy0

0 þ v0Þ2 þ w02
q

0
B@

1
CA

0

�
wC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y020

q
gð1þ e0Þ

.v þ
wC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y020

q
1þ e0

¼ 0; ð11Þ

EAð1þ e0Þðw0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

0

q �
EA w0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ u0Þ2 þ ðy0
0 þ v0Þ2 þ w02

q
0
B@

1
CA

0

�
wC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y020

q
gð1þ e0Þ

.w ¼ 0: ð12Þ

By substituting the equilibrium conditions u ¼ v ¼ w ¼ u0 ¼ v0 ¼ w0 ¼ u00 ¼ v00 ¼ w00 ¼ .u ¼ .v ¼
.w ¼ 0 into Eqs. (10)–(12), one can obtain Euler’s equations corresponding to the equilibrium state
in the direction of virtual displacements du and dv:

EA e0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

0

q� �0

¼ 0; ð13Þ

EA e0y0
0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

0

q� �0

þwC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

0

q
=ð1þ e0Þ ¼ 0: ð14Þ

Subtracting Eq. (10) by Eq. (13), and Eq. (11) by Eq. (14), the governing equations of motion
corresponding to the displacements in the directions u; v and w; respectively, are

EA þ EAð1þ e0Þu0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y020

q �
EAð1þ u0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ u0Þ2 þ ðy0
0 þ v0Þ2 þ w02

q
0
B@

1
CA

0

¼
wC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y020

q
gð1þ e0Þ

.u; ð15Þ
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EAy00 þ EAð1þ e0Þv0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y020

q �
EAðy0

0 þ v0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ u0Þ2 þ ðy00 þ v0Þ2 þ w02

q
0
B@

1
CA

0

¼
wC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

0

q
gð1þ e0Þ

.v; ð16Þ

EAð1þ e0Þw0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y020

q �
EAðw0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ u0Þ2 þ ðy0
0 þ v0Þ2 þ w02

q
0
B@

1
CA

0

¼
wC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

0

q
gð1þ e0Þ

.w: ð17Þ

These equations are highly non-linear and are coupled through the cable equilibrium
configuration. The associated boundary conditions read

uð0; tÞ ¼ vð0; tÞ ¼ wð0; tÞ ¼ uðXH ; tÞ ¼ vðXH ; tÞ ¼ wðXH ; tÞ ¼ 0: ð18Þ

This system is useful for analyzing 3-D undamped large-amplitude free vibrations under
specified initial conditions. It is worth noticing that the formulation considered could be
accounted for also in a local coordinate reference frame by using the relevant coordinate
transformation relationship [24] or suitable Euler-angle formulations [22].

3. Method of solution

Cable equilibrium configuration is to be evaluated. The shooting method is used to solve the
non-linear equilibrium Eqs. (13) and (14). Since a specified tension is imposed at one end of the
cable, in the computation it is more convenient to use an expression for the tension at any point
along the cable in place of Eq. (14). For this purpose, the equilibrium condition of a cable segment
in the tangential direction is used and is then converted into the following integral expression:

Tðx0Þ ¼ TH �
Z X0

XH

wC

ð1þ e0Þ
y0
0 dx0: ð19Þ

Using Eqs. (13) and (19), the proposed algorithm reveals itself to be efficient for solving the
cable problem with a specified end tension [29]. Each step of spatial integration is performed
through the fourth order Runge–Kutta scheme.

In order to analyze the free vibration problem, each partial differential equation (Eqs. (15)–
(17)) is differentiated term by term with respect to the spatially independent variable x0: The
ensuing equations of motion are written as follows:

ðY=CÞu00 þ ð1=CÞFðu0; u00; v0; v00;w0;w00Þ ¼ .u; ð20Þ

ðY=CÞv00 þ ð1=CÞGðu0; u00; v0; v00;w0;w00Þ ¼ .v; ð21Þ

ðY=CÞw00 þ ð1=CÞHðu0; u00; v0; v00;w0;w00Þ ¼ .w; ð22Þ

ARTICLE IN PRESS

N. Srinil et al. / Journal of Sound and Vibration 269 (2004) 823–852828



where the spatial variables Y ¼ ð1þ e0Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ y02

0 Þ
q

and C ¼ wC

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ y02

0

q
=EA gð1þ e0Þ are

defined, and the functions F ð::Þ; Gð::Þ and Hð::Þ of the displacement variables read:

F ð::Þ ¼

e00u0

ð1þ y020 Þ
1=2

�
ð1þ u0 þ e0u0Þy0

0y00
0

ð1þ y02
0 Þ

3=2

" #

�
ðy00 þ v0Þ2u00 þ w02u00 � ð1þ u0Þðy0

0 þ v0Þðy000 þ v00Þ � ð1þ u0Þw0w00

ðð1þ u0Þ2 þ ðy0
0 þ v0Þ2 þ w02Þ3=2

" #
8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; ð23Þ

Gð::Þ ¼

y000 þ e00v0

ð1þ y020 Þ
1=2

�
ðy0

0 þ v0 þ e0v0Þy0
0y00

0

ð1þ y02
0 Þ

3=2

" #

�
ð1þ u0Þ2ðy00

0 þ v00Þ þ w02ðy00
0 þ v00Þ � ð1þ u0Þðy00 þ v0Þu00 � ðy0

0 þ v0Þw0w00

ð1þ u0Þ2 þ ðy0
0 þ v0Þ2 þ w02

� �3=2
2
4

3
5

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
; ð24Þ

Hð::Þ ¼

e00w0

ð1þ y02
0 Þ

1=2
�
ðw0 þ e0w0Þy00y000

ð1þ y02
0 Þ

3=2

" #

�
ð1þ u0Þ2w00 þ ðy0

0 þ v0Þ2w00 � w0ð1þ u0Þu00 � w0ðy0
0 þ v0Þðy00

0 þ v00Þ

ðð1þ u0Þ2 þ ðy0
0 þ v0Þ2 þ w02Þ3=2

" #
8>>>>><
>>>>>:

9>>>>>=
>>>>>;
: ð25Þ

Numerical solutions to Eqs. (20)–(22) were obtained using finite difference discretization in
both space and time. Central differences were used for approximating spatial derivatives and the
second temporal derivatives. This led to a simple explicit form of the equations of motion for a
solution of the unknown displacements. The obtained displacements were then utilized as initial
guess of the next process by means of a predictor–corrector iterative algorithm. The solution over
each time step was iterated repeatedly until the convergence was satisfactory, and the allowable
tolerance was accomplished by the criterion of the second order vector norm.

4. Numerical results and discussions

A long suspended cable with horizontal span XH ¼ 850m is analyzed in order to better
highlight the effect of strain variation on non-linear dynamics. The cable has a cross-sectional
area A ¼ 0:1159m2, cable density equal to 8337.9 kg/m3, and modulus of elasticity
E ¼ 1:794� 107 kN/m2. The cable is discretized into 50 segments. Integration was performed in
all cases with a time step equal to 0.00001. The linear eigenvector is evaluated and normalized in
such a way that the maximum amplitude of nodal displacement is equal to unity [24].
Subsequently, each nodal displacement is multiplied by the initial amplitude (D) specified in each
case. Without structural damping, this amplitude has been chosen to attain a moderately large
value to ensure that the summation of the cable static tension and the additional dynamic one
does not become a compressive force. The initial velocities for all directions are assumed to be
identically zero throughout the present study.
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Table 1 gives the physical properties of four different cables, including the specified end tension
TH ; maximum static strain em; cable sag d; cable unstretched length S and cable equilibrium
length S0; which are all governed by the unique cable parameter governing the linear frequency

spectrum [20,30], i.e., l=p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðwCS0Þ

2EA=T3
a

q
=p (Ta is the static tension at cable mid-span). The

corresponding linear out-of-plane and in-plane frequencies are also documented. The specified
tensions have been selected to guarantee the existence of 1:1 internal resonance conditions
between symmetric and antisymmetric in-plane frequencies at the first and second crossover
points in the spectrum (l=p ¼ 2; 4 for cables B and C, respectively), in comparison with non-
crossover points (cables A and D). By altering this specified tension, the influence of cable
extensibility (strain variation) and cable sag can be seen. Obviously, the maximum extensibility is
that of cable A, whereas the maximum sag is that of cable D. Emphasis is placed on a prescribed
initial displacement condition according to the first four natural modes, namely the first
symmetric and antisymmetric modes of the in-plane and out-of-plane vibrations. Attention is
focused, on one side, on crossover cables, whose actual dynamic behaviors are analyzed versus the
background of theoretical conditions for activation of the existing internal resonances obtained
within an infinite dimensional analytical framework [31]; on the other side, attention is focused on
a large sag cable exhibiting higher multi-mode and axial extensibility effects. The analysis is
performed basically in terms of time histories of dynamic responses. In addition, spatial or phase-
portrait representations of cable motion and frequency response measures are provided to
describe specific features of system dynamics.

The 3-D non-linear responses at mid and quarter spans non-dimensionalized by the horizontal
span ðXHÞ are typically shown. Time (T) is non-dimensionalized by the fundamental period of
each linear frequency. The cable total tension TD ¼ EA %e is readily computed from the
displacements through Eq. (4), and is then non-dimensionalized by the value of the maximum
static tension (TH). Total tension responses inclusive of the initial static strain are presented rather
than simple additional dynamic tension. Moreover, not only the maximum tension—which is of
interest to the designer for evaluating the tensile strength capability—is investigated, but also the
minimum tension so as to search for the position where compression possibly happens. The
dynamic strain being a function of both space and time, the positions at which maximum and
minimum tensions occur may change, depending on how the nodal points vibrate in each time
step.
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Table 1

Cable properties and corresponding linear frequencies for four different cables

Cable l=p TH (kN) em d (m) S (m) S0 (m) Linear natural frequencies (Hz)

Out-of-plane mode: O In-plane mode: I

1st S–O 1st A–O 1st S–I 1st A–I 2nd S–I 2nd A–I

A 0.72 30 000 0.01443 28.39 840.48 852.53 0.104 0.208 0.123 0.206 0.312 0.414

B 2.00 15 642 0.00752 56.59 853.69 859.96 0.074 0.147 0.145 0.145 0.226 0.292

C 4.00 10 500 0.00505 89.57 870.51 874.67 0.058 0.115 0.158 0.112 0.222 0.229

D 10.01 7000 0.00337 164.11 926.65 929.31 0.043 0.085 0.119 0.076 0.206 0.165

S: symmetric mode; A: antisymmetric mode.
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Fig. 2. Dynamic responses of cable A under initial condition of the 1st S–O mode: (a) longitudinal response; (b) vertical

response; (c) out-of-plane response: —— mid-span, – – – quarter span; (d) cable tension response: —— maximum, – – –

minimum
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4.1. Large-amplitude out-of-plane free vibrations

The analysis starts by considering out-of-plane initial conditions with either symmetric or
antisymmetric spatial shapes.

4.1.1. First symmetric out-of-plane mode (1st S–O mode)

The assigned amplitude D is equal to 15m for each cable. Starting from taut cable A, the out-of-
plane response is perfectly periodic (Fig. 2(c)). The energy driven by the out-of-plane response
geometrically induces longitudinal and vertical responses through kinematic coupling of 3-D
motion. The vertical non-periodic response is disturbed by a higher frequency (Fig. 2(b)), while
the longitudinal one has a considerably lower amplitude (Fig. 2(a)). The out-of-plane motion does
not involve any first order cable stretching in the linear theory [30], corresponding substantially to
a pendulum-like motion. In contrast, Fig. 2(d) displays the additional forces induced in the non-
linear range.

Cable B corresponds to the first crossover (l=p ¼ 2), where various internal resonances do
coexist. However, the meaningful one involving the initiated out-of-plane mode is the 2:1
resonance between 1st S–I and 1st S–O modes, which is actually activable due to non-
orthogonality of the relevant non-linear normal modes, which are both symmetric [31].
Consistently, a beating phenomenon is observed in the relevant responses (Fig. 3), as already
highlighted in Ref. [5] for a two-degree-of-freedom cable model. The maximum out-of-plane
amplitude decreases to about 0.64 times its initial value (Fig. 3(c)) due to the interaction with the
corresponding in-plane response, whose maximum amplitude rises from zero to about 43.74% of
the maximum out-of-plane amplitude. Correspondingly, the cable maximum tensions in Fig. 3(d)
are enhanced considerably, and are greater than those obtained for cable A, being associated
mostly with the increased in-plane vibration (Fig. 2(d)). The relationship between vertical and out-
of-plane displacements at mid-span is depicted in Fig. 4(a). It can be seen that the out-of-plane
component vibrates nearly symmetrically about the in-plane axis. The in-plane amplitude reaches
the maximum negative value when the out-of-plane amplitude is close to zero. This implies that
the cable configuration drifts upwards when the cable vibrates close to the vertical plane, as shown
by the cable 3-D profiles in Fig. 4(b) for TE0� 5:

Consider now cable D sagging significantly (d=XHE1=5). The relevant longitudinal and vertical
responses contain many high-frequency components and are definitely non-periodic (Figs. 5(a)
and (b)), whereas the out-of-plane response in Fig. 5(c) is still periodic. The maximum amplitude
of tension response is lower than that obtained for the resonant cable B. Since the out-of-plane
response of each cable has a single (low) frequency, the Fourier amplitude spectral densities of the
driven vertical responses are illustrated in Fig. 6 against those of cables A and B, in order to check
the dominant frequency of the vibrations. Evidently, the vertical responses of cables A and D
contain a number of higher frequency components (Figs. 6(a) and (c)) relevant to their non-
periodic nature. In contrast, cable B attains a single frequency (0.156Hz) twice that of the out-of-
plane one (0.078Hz), due to the energy being periodically transferred between the driving and
excited modes of the 2:1 resonant cable (Fig. 6(b)).

It is worth analyzing the spatial shape of non-periodic responses by focusing attention on the
large sag cable D, whose longitudinal, vertical and transversal vibration profiles at different
instants (TE6:026:5) are illustrated in Fig. 7. Apparently, the in-plane response profiles manifest
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Fig. 3. Dynamic responses of cable B under initial condition of the 1st S–O mode: (a) longitudinal response; (b) vertical

response; (c) out-of-plane response: —— mid-span, – – – quarter span; (d) cable tension response: —— maximum, – – –

minimum.
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themselves as a combination of contributions from many modes (Figs. 7(a) and (b)), different
from the nearly unimodal out-of-plane profile (Fig. 7(c)). Because of the high modal densities of
cable suspensions, significant higher order in-plane modes are generated when a single-mode out-
of-plane amplitude is initiated. This multi-harmonic character of the driven in-plane response
occurs even for the shallower cables, though to a minor extent. This highlights the need of
utilizing a m.d.o.f. cable model in order to obtain detailed and reliable non-linear response
predictions, mostly for a relatively large sag cable.
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Fig. 4. Response of cable B under initial condition of the 1st S–O mode: (a) relationship plot between vertical and out-

of-plane displacements at mid-span; (b) 3-D profiles (TE0� 5).
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4.1.2. First antisymmetric out-of-plane mode (1st A–O mode)
For cable B with D ¼ 15m, the longitudinal and vertical displacements—the former still

exhibiting much lower amplitude values—are disturbed by high-frequency components. The in-
plane response is that of the 2nd S–I mode, which is supposed to be excited according to a super-
harmonic coupling (of the order of 3

2 approximately) induced by the driving 1st A–O mode,
whereas the out-of-plane response is perfectly periodic and its maximum amplitude is of course
greater than that occurring at quarter-span when exciting the 1st S–O mode (Fig. 3(c)).
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Fig. 5. Dynamic responses of cable D under initial condition of the 1st S–O mode: (a) longitudinal response; (b) vertical

response; (c) out-of-plane response: —— mid-span, – – – quarter span.
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When considering cable C with D ¼ 5m, the beating phenomenon is observed again for the
overall responses (Fig. 8), resembling that obtained for the first resonant cable B in Fig. 3. The
associated cable parameter is that of the second crossover where various frequency
commensurabilities do occur. Amongst them, the nearly 2:1 internal resonance between the 2nd
S–I and 1st A–O modes is actually activable for involving a high-frequency symmetric in-plane
mode [31] and, indeed, it plays an important role, as shown by the spatial shapes of the
longitudinal and vertical responses of the excited 2nd S–I mode reported in Figs. 9(a) and (b),
respectively (TE2:423:4). The graphs in Figs. 8 and 9 confirm how the non-linear coupling is
enhanced due to the internal resonance, which also entails a regularization of the in-plane
response—towards which the energy is periodically transferred—with respect to cable B. In
particular, the maximum amplitude of the out-of-plane response is reduced to about 0.79 times its
initial value, whereas the maximum vertical amplitude rises from zero to about 33% of the
maximum out-of-plane amplitude.
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Fig. 6. Fourier amplitude spectra of cable vertical responses under initial condition of the 1st S–O mode: (a) cable A;

(b) cable B; (c) cable D.
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With the same initial amplitude, a combination of high-frequency components occurs again in
the in-plane responses of cable D for which no internal resonance exists. The Fourier amplitude
spectrum of the corresponding in-plane response is illustrated in Fig. 10 against those of cables B
and C. The driven vertical responses of cables B and, mostly, D contain higher frequency
components (Figs. 10(a) and (c)). Due to a 2:1 resonant condition, the vertical response of cable C
has a single frequency (Fig. 10(b)), whose value (0.234Hz) is approximately twice that of the out-
of-plane one (0.117Hz). These results highlight the fact that, apart from the regularizing effects
entailed by the internal resonance condition, the in-plane response excited by the out-of-plane
motion for a generic (non-resonant) cable is non-periodic, due to a combination of high-frequency
components, irrespective of cable sag condition. The multi-harmonic longitudinal and vertical
responses of cable D are displayed in Figs. 11(a) and (b) (TE4:024:5) against the harmonic out-
of-plane one (Fig. 11(c)), with the amplitude of the longitudinal response being now nearly
comparable to that of the vertical one due to the large sag effect.

From the numerical results obtained in Section 4.1, non-zero values of vertical responses are
obtained at cable mid-span. While highlighting that symmetric in-plane modes are excited by a
prescribed out-of-plane mode, either symmetric or antisymmetric, this also confirms numerically
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Fig. 7. Vibration profiles at different instants (TE6:0� 6:5) for cable D under initial condition of the 1st S–O mode:

(a) longitudinal response; (b) vertical response; (c) out-of-plane response.
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Fig. 8. Dynamic responses of cable C under initial condition of the 1st A–O mode: (a) longitudinal response; (b)

vertical response; (c) out-of-plane response: —— mid-span, – – – quarter-span; (d) cable tension response: ——

maximum, – – – minimum.

N. Srinil et al. / Journal of Sound and Vibration 269 (2004) 823–852838



ARTICLE IN PRESS

Fig. 9. Vibration profiles at different instants (TE2:4� 3:4) for cable C under initial condition of the 1st A–O mode:

(a) longitudinal response; (b) vertical response.

Fig. 10. Fourier amplitude spectra of cable vertical responses under initial condition of the 1st A–O mode: (a) cable B;

(b) cable C; (c) cable D.
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the theoretically predicted role [31] of symmetric in-plane modes in the actual activation of 2:1
internal resonances at crossover points. As regards cables with significant sag, it is worth noticing
that the occurrence of a multi-harmonic response in the driven displacement components justifies
the consideration of a m.d.o.f. cable model.

4.2. Large-amplitude in-plane free vibrations

Without any external excitation, no 3-D coupling occurs when only in-plane amplitude is
initiated. This is because of the existence of monofrequent in-plane vibrations [2], consistent with
the vanishing of all terms in the coupled equation of motion (Eq. (22)) when the variables
corresponding to the out-of-plane displacement are set to zero. Nevertheless, there occur some
interesting interaction behaviors, which are discussed below.

4.2.1. First symmetric in-plane mode (1st S–I mode)
When considering cable A with D ¼ 15m, the longitudinal responses are very low, the vertical

responses are periodic, and the maximum tension has a steady maximum value greater than that
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Fig. 11. Vibration profiles at different instants (TE4:0� 4:5) for cable D under initial condition of the 1st A–O mode:

(a) longitudinal response; (b) vertical response; (c) out-of-plane response.
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induced by the symmetric out-of-plane mode. In contrast, when considering cable B with the same
initial amplitude, some outstanding characteristics are observed in the responses (Fig. 12). The
vertical amplitude at mid-span, which is of course larger than the amplitude at quarter-span, is
reduced evidently in some intervals (TE12� 15). Correspondingly, the longitudinal amplitude is
increased due to a beating-like exchange. In contrast, both longitudinal and vertical amplitudes at
quarter-span increase up to 4.74 and 2.00 times their initial values, respectively.
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Fig. 12. Dynamic responses of cable B under initial condition of the 1st S–I mode: (a) longitudinal response; (b) vertical

response: —— mid-span, – – – quarter span; (c) cable tension response: —— maximum, – – – minimum.
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For the sake of convenience, the transition of the vibration profile is shown to explain what
occurs during this time duration. Only the dominant vertical displacements are displayed. As
exemplified in Fig. 13, initially (TE2:1) the vibration profile corresponds closely to the symmetric
in-plane mode at the first crossover, namely it is tangential to the equilibrium cable profile at each
support (Fig. 13(a)). The associated antisymmetric longitudinal displacement is nearly zero at
mid-span. Then, the vibration profile evolves smoothly towards a hybrid asymmetric shape (Figs.
13(d) and (e)) which accounts for a superimposition of the first symmetric and antisymmetric
modes. Accommodation of the latter into the response ensues from cable B corresponding to a
perfectly tuned 1:1 internal resonance between the two in-plane modes and from 1:1 internal
resonances being always activable at crossover points [31]. Due to the antisymmetric vertical
displacement accompanied by a symmetric longitudinal one with maximum value at quarter-span
[30], the simultaneous increase of both corresponding amplitudes in Figs. 12(a) and (b) is
explained. Afterwards, the vibration profile returns back to the symmetric mode (TE23:0; Fig.
13(f)). In turn, the tension responses—which attain rather large values, on average—change
slightly when the hybrid mode phenomenon takes place (Fig. 12(c)). The previous results further
confirm some points made in the literature (see, e.g., Refs. [11,14]) about the antisymmetric mode
being driven in the response by an existing symmetric one due to non-linear modal coupling and a
mechanism of induced dynamic tension. The difference here is that the in-plane coupled dynamics
are non-stationary.

Exciting the large-sagged cable D with a reduced initial amplitude (D ¼ 5m), the longitudinal
and vertical responses are slightly disturbed by high-frequency components. This implies that the
cable sag has an influence also on the in-plane response besides the out-of-plane one. Moreover,
the difference in magnitude occurring between maximum and minimum tensions (Fig. 14) justifies
the need to take into account strain variations in the non-linear cable model.

4.2.2. First antisymmetric in-plane mode (1st A–I mode)
No special features are observed in the dynamic response of the 1:1 resonant cable B with

D ¼ 15m, different from the previous case of excitation with symmetric mode, in particular no

ARTICLE IN PRESS

Fig. 13. Modal transition of cable B at different instants under initial condition of the 1st S–I mode: (a) TE2:1; (b)
TE5:2; (c) TE8:4; (d) TE10:5; (e) TE12:6; (f) TE23:0:
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other modes enter the response. Considering cable C with D ¼ 5m, the beating phenomenon is
clearly observed in the force responses (Fig. 15(c)), while some noteworthy characteristics occur in
the displacement time histories, too (Figs. 15(a) and (b)). The observed behavior is governed by a
kind of internal resonance existing at the second crossover. The vibration profiles at different
times are displayed comparatively in Fig. 16. Evidently, the shape of vertical response evolves
from the initial antisymmetric mode, occurring when TE1:0 (Fig. 16(a)), to the second symmetric
mode (Fig. 16(b)), up to a hybrid profile accounting for the two modes when TE4:7 (Fig. 16(d)).
Then, the shape returns to the second symmetric mode (Fig. 16(e)), and eventually develops to
become again the original antisymmetric mode when TE6:7 (Fig. 16(f)). Thus, Fig. 16 reveals
how the 2nd S–I mode is excited and accommodated into the response initiated by the 1st A–I
mode due to their involvement in a 1:2 internal resonance, which is again activated because of the
higher-frequency mode being symmetric [31]. This higher mode is seen to substantially dominate
the cable vibration profile in some intervals of the considered time stepping, and to cause
meaningful increases in the magnitude of cable tension responses (Fig. 15(c)). The non-linear
frequencies dominating the longitudinal and vertical responses are evaluated using the Fourier
amplitude spectral densities, as shown in Figs. 17(a) and (b). They are approximately equal to
0.115 and 0.225Hz, thus being both greater than the corresponding linear frequencies of first
antisymmetric and second symmetric modes (Table 1), respectively: the system is thus seen to
exhibit a weakly hardening non-linear behavior.

Two points are worth noticing for the present cable C at the second crossover, where various
internal resonances occur. (i) The (coexisting) 2:1 resonance between the 2nd A–I mode and the
initiated 1st A–I mode does not play any role, which ensues from the activation of 2:1 in-plane
resonances requiring contribution from at least one (higher-frequency) symmetric mode [31]. (ii)
The activable 1:1 internal resonance involving the 2nd S–I and 2nd A–I modes—and
characterizing the second crossover—also occurs, but it does not play any role, too, since the
1st A–I mode is initiated. Consequently, it seems worth analyzing how the motion behaves when
applying the 2nd S–I mode as the initial condition, instead. Fig. 18 shows the overall responses
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Fig. 14. Cable tension responses of cable D under initial condition of the 1st S–I mode: —— maximum, – – – minimum.
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under this initiation with the same assigned amplitude (D ¼ 5m) as before. Two interesting
features are observed. (i) The longitudinal and vertical amplitudes at quarter-span are both
increased to about 3.23 and 1.54 times their initial value, respectively; (ii) correspondingly, the
relevant non-linear frequencies both decrease.

To explain the first point, the transition of the vibration profiles associated with the vertical
amplitudes is displayed in Fig. 19 for those particular time intervals. Starting from TE11:4; the
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Fig. 15. Dynamic responses of cable C under initial condition of the 1st A–I mode: (a) longitudinal response; (b)

vertical response: —— mid-span, – – – quarter span; (c) cable tension response: —— maximum, – – – minimum.
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profile corresponds to the 2nd S–I mode (Fig. 19(a)), then it evolves to a hybrid profile when
TE20:7 (Fig. 19(b)), up to changing completely into the 1st A–I mode when TE22:6 and 24.3
(Figs. 19(c) and (d)). After attaining a further hybrid shape (Fig. 19(e)), the 2nd S–I mode resettles
again at TE30:4 (Fig. 19(f)). This phenomenon of modal transition repeats itself as long as no
external disturbance is imposed on the cable. Thus, Fig. 19 reveals how the lower order
antisymmetric mode is excited and accommodated into the cable response due to the 2:1 internal
resonance condition. During the time interval where the vertical profile coincides approximately
with the antisymmetric mode, the cable tension in Fig. 18(c) diminishes by about 40% with
respect to its maximum value, as expected from the linear theory since antisymmetric modes entail
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Fig. 16. Modal transition of cable C at different instants under initial condition of the 1st A–I mode: (a) TE1:0; (b)
TE2:7; (c) TE3:7; (d) TE4:7; (e) TE5:1; (f) TE6:7:

Fig. 17. Fourier amplitude spectra of cable C under initial condition of the 1st A–I mode: (a) longitudinal response at

quarter span; (b) vertical response at quarter span.
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no first order axial stretching. The obtained results (Figs. 18 and 19) are substantially the reverse
of those in Figs. 15 and 16, with the role of the two involved modes being exchanged with each
other during the transition interval. A difference is represented by the amplitude decrease
(increase) of both the longitudinal and vertical responses occurring in the transition interval when
the first antisymmetric (second symmetric) mode is initiated. Besides ensuing from the specific
profile changes, it also expresses the circumstance of the 2nd S–I mode being more constrained
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Fig. 18. Dynamic responses of cable C under initial condition of the 2nd S–I mode: (a) longitudinal response; (b)

vertical response: —— mid-span, – – – quarter span; (c) cable tension response: —— maximum, – – – minimum.
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than the 1st A–I one, which entails a lower amplitude of the former with respect to the latter at a
given energy level. Thus, one can conclude that the dominant internal resonance is the 2:1 one
even when initiating the 2nd S–I mode. The possible activation of the 2nd A–I mode involved in
the 1:1 resonance with the excited symmetric one does not actually occur, since the 2:1 resonance
usually dominates instead of the coexisting 1:1 [14].

To check the frequency of longitudinal and vertical responses in the transition interval, the
Fourier amplitude spectra are illustrated (Figs. 20(a) and (b)). The non-linear frequencies are
equal to 0.107 and 0.210Hz, approximately, and denote a weakly softening non-linear behavior,
contrary to the first antisymmetric initiation. Phase-plane portraits are also reported in Fig. 21,
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Fig. 19. Modal transition of cable C at different instants under initial condition of the 2nd S–I mode: (a) TE11:4; (b)
TE20:7; (c) TE22:6; (d) TE24:3; (e) TE26:3; (f) TE30:4:

Fig. 20. Fourier amplitude spectra of cable C under initial condition of the 2nd S–I mode: (a) longitudinal response at

quarter span; (b) vertical response at quarter span.
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whose variable p in the vertical axis is the linear period of the initiated mode. They exhibit
elliptical trajectories of maximum displacements with features of amplitude modulation of both
longitudinal and vertical responses, as well as of small perturbations of the former. Fig. 21 shows
how the energy of the motion changes through the dominant resonant condition, namely the inner
repeated ellipses indicate the motion on the second symmetric mode, whereas the outer ellipses
correspond to the first antisymmetric mode.

This section is concluded with a further short comment about numerical checks on possible
activation/non-activation of coexisting internal resonances. Another cable yet to be referred (not
reported in Table 1) corresponds to the 3rd crossover point (namely, l=p ¼ 6) of in-plane
frequencies. In such a case, theoretical predictions [31] suggest that the 3:1 resonance occurring
between 3rd S–I mode (oE0:281Hz) and 1st A–I mode (oE0:094Hz) is not activable because the
involved modes are of a different type (symmetric–antisymmetric), whereas the 2:1 resonance
between 3rd S–I and 1st S–I (oE0:141Hz) could be activated since it involves two symmetric
modes. Numerical results confirm these predictions, as highlighted in Figs. 22 and 23. The former
shows the overall responses of this new cable due to 3rd S–I initiation; the vibration profiles in the
latter show the accommodation of the 1st S–I mode (Fig. 23(d)) in the response dominated by
the 3rd S–I mode (Figs. 23(a) and (f)), within the transition interval of Figs. 22(b) and (c) where
the vertical amplitude at mid-span increases and the dynamic tension decreases.

5. Conclusions

A 3-D model formulation capable of analyzing the large-amplitude free vibrations of a
suspended cable has been developed. According to a m.d.o.f. model of cable, which accounts for
the axial deformation effect, the formulation is not restricted to cables having small sag-to-span
ratios. A finite difference discretization of the equations of motion in both space and time has
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Fig. 21. Phase-plane portraits of cable C under initial condition of the 2nd S–I mode: (a) longitudinal response at

quarter span; (b) vertical response at quarter span.
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been performed and numerically implemented to obtain time histories of non-linear dynamic
response. Numerous examples of cables subjected to initial large-amplitude out-of-plane or in-
plane vibrations have been discussed in the case of a specified end tension.
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Fig. 22. Dynamic responses of cable corresponding to the 3rd crossover point (l=pE6) under initial condition of the

3rd S–I mode: (a) longitudinal response; (b) vertical response: —— mid-span, – – – quarter span; (c) cable tension

response: —— maximum, – – – minimum.
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Based on the analysis results, the following points on cable non-linear behaviors are drawn, in
the case of out-of-plane initial displacement conditions.

* Symmetric in-plane modes are excited irrespective of the initiating out-of-plane motion being
symmetric or antisymmetric, with the latter case involving higher symmetric modes.

* Regardless of cable sag condition, the driven in-plane response of a non-resonant cable is non-
periodic, unlike the periodically driven response of an internally resonant cable. In turn, non-
linear 3-D coupling is enhanced by the occurrence of an internal resonance condition.

* The cable tension is augmented mostly due to the occurrence of increased in-plane vibration
amplitudes, and is further enhanced when the cable exhibits internally resonant frequencies.

* For a cable sagging significantly, the cable vibration profiles exhibit qualitatively multi-
harmonic responses due to geometric non-linearities: this accounts for the need to consider
m.d.o.f. cable models. In addition, the longitudinal response tends to become nearly
comparable to the vertical one, though being an order of magnitude lower than that for
low-sagged cables.

In the case of in-plane initial displacement conditions, depending on driving mode and on
magnitude of specified initial amplitude, worthwhile phenomena of modal transition may take
place for crossover cables during the ensuing in-plane vibrations. Indeed, due to the occurrence of
a dominant internal resonance, a higher or lower mode can be accommodated into the response
initiated by a single mode, making the cable vibration profile hybrid in some intervals of the
considered time marching. Besides the well-known 1:1 internally resonant cable at the first
crossover, whose first antisymmetric mode is excited when the first symmetric mode is initiated,
various modal transition phenomena occur for 2:1 resonant cables. E.g., at the second crossover,
the second symmetric (first antisymmetric) mode is excited when the first antisymmetric (second
symmetric) mode is initiated: the excited symmetric (antisymmetric) mode may dominate
substantially the cable vibration profile, as well as induce meaningful increase (decrease) in the
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Fig. 23. Modal transition of cable corresponding to the 3rd crossover point (l=pE6) at different instants under initial

condition of the 3rd S–I mode: (a) TE6:2; (b) TE9:3; (c) TE11:3; (d) TE15:3; (e) TE19:0; (f) TE28:2:
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magnitude of cable tension responses. Moreover, the difference in magnitude between maximum
and minimum tensions increases for a cable with significant sag, which highlights the need to
account for strain variation in the cable model.

All of the numerical results obtained for cables at crossovers have been discussed against the
background of the theoretical predictions about activation of 1:1 or 2:1 internal resonances made
within an infinite dimensional analytical framework [31]. Besides highlighting the dynamic effects
entailed by their actual activation, numerical results provide worthwhile information about which
one of the coexisting internal resonances actually governs the system dynamics.
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